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ENERGY DISTRIBUTION OF A SURFACE SOURCE IN AM ~~HO~OGE~EOUS HALF-SPACE* 

E.V. GLUSHKOV 

Relations describing the energy flux in an elastic medium in terms of the surface 
loads and Green matrix components are used to obtain formulae suitable fox determin- 
ing the density of the total amount of energy transported by various type waves 
across a horizontal plane , side surface of a cylinder, and surface of a sphere of 
large radius. This makes possible the complete determination of the energetic bal- 
ance in a vertical inhomogeneous half-space. 

When the power from an oscillatory source is transmitted through the earth, it is import- 
ant to know thedistribution of energy between the elastic, various type waves. The known /l, 
2/ relations connecting the energies of the longitudinal., transverse and Rayleigh waves have 
been obtained jar a model of a homogeneous elastic half-space. The inhomogeneityoftheearth's 
core however stipulates the redistribution of the energy between the various type waves and in 
different directions. The same problem is encounteredin designing antivibration coatings from 
composites, multilayer constructions, acoustoelectronic devices on surface waves, etc. The 
present paper deals with the development of the method of its solution. 

1. We consider an elastic or viscoefastic inhomogeneous half-space (-oo<~, ~<m, --m< 
zd0) with depth-dependent properties I== I(X), p= p(e), p= P(a). Here p is density, h= A,+ &, 
P=Pl+th are the Lam& coefficients of the medium and we have j\l<% kGO;b,= h=O fortheelas- 
tic medium. The steady state oscillations of the medium V= RE[UG-'"'1 are generated by harm- 
onic surface loads r-Re[qC'*'],(z,y)~B defined in some region 8. Outside Q the surface of the 
medium is load-free; u(z,y,z),q(~,y) are the complex amplitudes of the displacements and surface 
stresses. fn the course of investigating the steady state oscillations- it is expedient to use 
as the measure of change of energy within a volume, its change averaged over the oscillation 
period T=2nlo /3/ 
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Here Ed is the energy within a certain volume of the medium bounded by the surface S,ps is the 
energy flux density and o is the caapkx amplutide of the stress vector, the stresses appear- 
ing on the area element with outward normal n to the surface S. 

The displacements u of the medium can be expressed in terms of the surface stresses P /a/ 

(1.2) 

I 
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K (al, as, z) = - ialal (M - N)/a2 - i {alaN f apPM)/aa - ialP 
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The quantities M,N,p,&S are functions of a = d-2 and are determined from the 

boundary value problems for the systems of differential equations with variable coefficients 
in case of continuous and inhomogeneous media or with piece-wise continuous in the case of 
multilayered media. The el.ements of the matrix K are functions regufar in a and z, have a 

finite number of real poles in variable a and an enumerable number of complex poles. The 
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integration contours rl, rz which coincide almost everywhere with the real axis and deviate 
from it only when going around the real poles of the integrand functions, are chosen in ac- 
cordance with the principle of limit absorption. The choice of the contours r,,I'* and the 

properties of K were discussed thoroughly in /4/. 
The main difficulty encountered while using the representation (1.2) consists of the fact 

that when the properties of the medium depend on the depth in an arbitrary manner, then the 
elements of the matrix li cannot be written in an explicit form. Methods for their construc- 

tion based on numerical solutions of the corresponding boundary value problems were given 

earlier in detail in (*). The stability of these methods is ensured by the preliminary separ- 
ation of the exponential and strongly oscillatory terms of the solution in explicit form. 

2. Let us denote by s the surface z = const parallel to the surface of the medium and 
situated at the depth z. From (1.1) and (1.2), using the Parseval equality and making the 
substitution 

we obtain 

a, = a cos y, a, = a sin y; 0 < y < 2n, a E r 

E= $&ImSG(a,z)ada 
r 

(2.1) 

G(u,z)=*f(E.U)dy= 

FI 1p (MO’ + S) M* + ((h + 2~) S’/aZ- hi) S*I + F~~N’LV* + 
Fa Wp (R + P’) P+ + ((h + 2~) R’ - a%‘) R*I + 
F4 Ip W’ + S) P* + ((A + 2~) S‘/ae - AM) R*] + 
Fs Ip (fl + P’) M* + ((h + 2~) R’/ap - AP) S*] 

F~=pQ,,Q,z*dy, F,=yQ,,Q,,*dy 
0 0 

J’s = y QaQs* dy, F, = Is” QnQs” dy, Fs = y QsQ12* dy 

Q12 2(a,QI + a2Q2)la2, b,, = (azQ1 - a,Q~)/a2 

Here U, 2 is the Fourier transform of u, a. The asterisk denotes complex conjugates, the 
conjugate functions have the conjugate arguments a,*, a2*, a* and a prime denotes the deriva- 
tives in z. The function G(a,z) is complex valued in some bounded domain of variation of 
CC and has double poles & on thereal axis, distributed to the right of the zone of complex 
values. Therefore we can split E into two components 

E = E,, + En (2.2) 

Here x is the upper boundary of the zone of complex values; for the homogeneous half-spacewe 
have x = p&3/~ , while for a layer of finite thickness we have x = 0 and Ev=O. Below we 
show that Er is the energy of the volume waves passing across the plane z = const, and KR is 
the energy transported across this plane by the Rayleigh type waves. 

Let us turn our attention to the choice of the contour r, using the principle of limit 
absorption /5/. We assume that the internal friction in the medium 6 is different from zero. 
In this case the poles &,. of the elements of the matrix Ksituated on the positive part of 
the real axis when 8=0, become complex and are displaced into the upper half-plane. One 
of the poles Eh- can also be displaced into the lower half-plane. This occurs in the case of 
irregular poles associated with the corresponding "inverse" waves (see /4/J. The integrand 
function G(a,z)a contains in the neighborhood of some pole Er, the terms 

c&a - &.), dk/(a - En-*); ck, d, = const 

If 8 #O, then G(a,z) has no real singularities and the contour r coincides with the real 
axis. Let 0 tend to zero by deforming the contour r at the points of emergence of &. onto 

*) Glushkov E.V. and Gluskova N.V., Calculation of the energy of elastic waves generated by 
surface sources in a stratified half-space. Rostov-on-Don, Dep. v VINITI, No.5827-81, 1981. 
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the real axis in such a manner, that the pole does not intersect the contour. The contour r 
can be deformed since G(a,z) is an analytic function. The terms of the integrand function 
of the form c&a - &) are bypassed by the contour r from below for the regular poles, and 
the terms %/(a - &*) from above (%,* is displaced downwards) for the irregular poles the 
procedure is reversed. Consequently we have 

ER = +- & z jk (ck - d,) 
k 

(2.3) 

(it = 1 for the regular and jr = -1 for the irregular poles). Thus by r we understand a 
set of contours, every one of which is chosen separately for different terms of G(a,z)a. 

In determining ck and dg the danger arises of referring the functions of the form (f*)* = 
f to the nonconjugated functions. In expanding these functions into the Laurent series, dif- 
ferent representations are obtained for the complex %, e.g. 

c = % + (a - %), (a*) * = %* + (a - 5') 

(when 6+0, % and %* are displaced in opposite directions). Therefore the rule (f*)*= I can- 
not be used in the derivation of (2.3) and the all asterisks must be retained to the end. The 
representation (2.2) makes it possible to determine the amount of energy of the volume and 
Rayleigh waves transmitted from the surface source to the medium, to obtain its distribution 
between the different volumes of the medium contained e.g. between the planes z=zl and z=z2 
or between the different layers of a multilayer medium, to follow the effect of the properties 
of the inhomogeneous medium on the dependence on 2 of the amount of energy passing across the 
plane z = con& , etc. 

Numerical computations were carried out with all physical quantities reduced to the dim- 
ensionless form. The surface stresses q and Lame' coefficients h,~ were referredtothesome 
characteristic value of the shear modulus of the medium po, the density p to the character- 
istic density of the medium PO and the linear quantities to the characteristic linear dimens- 
ion 0. In this cases the generalized frequency i3= wafi"/fi is used as the frequency and 
the forces are given in pOaP. The energy flux per period T= 2n/3 is obtained in terms of the 
units &, = a~rO'/$,-'/* and in what follows the bar above o willbeomitted. 

Fig.1 depicts the dependence of the energy frequency entering the medium fromthenormal 
(subscript z ) and tangential (subscript 2) load distributed uniformly over a circle of unit 
radius; Ey,,, Ev,= and ER,~, ER,= denote the parts of the energy taken up by the volume and the 
Rayleigh waves respectively. The medium is an elastic, two-layer half-space of thickness h= 
4. The parameters of the upper layer (medium 1) and lower half-space (medium 2) are h,=O.O8, 

~1=0.08,~,=0.5 and A, = 10, k = i, p, = i respectively, and this corresponds to the following ratio 
of the rates of propagation of the longitudinal uPSi and transverse ~~,~(i= i, 2) waves: 

The dashed lines in Fig.1 denote the energy entering a homogeneous half-space, with the prop- 
erties of the upper layer. 
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Fig.2 depicts the dependence 
of the energy of the volume and 
Rayleigh waves passing across the 
plane z=const in a five-layer 
half-space, on the depth z. The 
top layers are of thickness hi= 1 
(i = i, . . ., 4) and the properties of 

4.6 -6.J 
the layers alternate (medium 2- 
medium 1) 0~0.5. We see that the 
energy of the Rayleigh waves Es,,, 
Es., diminishes with 2 since 
there is an energy leakage inthe 
horizontal direction, while the 
energy of the volume waves remains 
constant. 

Fig.2 
3. Let S denote the side 

surface of a cylinder of radius 
contained between 

ER = j, i PRY dq dz; z=rcoscp, y=rsincp, O<cp<2n (3.1) 
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Here pa denotes the energy flux density across the side surface of the cylinder. The displace- 

ments u have the following asymptotic representation (*) : 

(3.2) 

ak(s,y,z)= v- 
% xresK(-acoscp, -asincp,a,z)Ja+..k 

where for the axisymmetric function q(r, y) we have 

B, = Q&4 
and for the non-axisymmetric function q(z, y),p=vm we have 

From (3.2) we can obtain an asymptotic representation for the stress vector Q appearing in 
the expression (1.1) for the energy density, by taking into account the relations 

U = 3 Uk + 0 (r+). uk I ake’Ekt/fi 
k 

a” -= i au 
ar but + O(r-9, a~= uk' + O(r+), r-_) 30 

k k 

The derivatives (+')with respect to z of the vector uk are expressed in terms of M',N', P’, R’, 
S’, the latter representing the derivatives of the elements of the matrix K which are deter- 

mined simultaneously with the functions M, N, P, R, S themselves. For the vector e = {a,, 

cri, a,} we have 

r--t 00, z = const. If 
energy flux density 

The integrand function in (3.1) is of the order of unity when r-00, since II, u N r-‘/J when 
S is a lower hemisphere of radius R = i/x" + yZ +z*>i , then (pv is the 

across the hemisphere) 
2x n 

We assume that when 

which is true, provided that A, p, p tends, as z+ -m, to constant values 
according to a power law. We have 

(3.3) 

the asymptotic representation of n has the form 

u=~~~u,+O(R-~), R-+x, u, = b,eiRXs/R 

b, = q K, hsr o& Q (a,,,, a2.Ax, 

a 1.8 = -x8 sin I# cos cp, a2, 8 = -x, sin + sin cp, s = 1, 2 

Z-+-CO, then the matrix K has the following representation: 

K (al, a2,z) - *iI K, (al, ad 8’ , Z-L- 30 

or increase, at most, 

0, = (hi, d- Sipx,b, + p (n X r,))e*s/R 
d, = ix, [sin I$ (b,, 1 

r, = Ii (b,,, 
cos cp + b,, 2 sin cp) + b,, cos $1 

sin cp sin $ - ba,* cos 9) + j (b,, 1 cos + - 

*I Here and henceforth we use the results of the paper given in the previous footnote. 
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b,,, cos q sin +) -+- k sin $I (6, 2 cos cp - b,, 1 sin cp)] ix, 

b, = 1bS.1, b,,z, b,, 3) 

Here u, (I-R-', R+ 00, therefore the integrand function in (3.3) is p,.R2- 1, R-too. Thus, 
by virtue of the asymptotic representations obtained, Pv and ps are the energy densities of 
the volume and Rayleigh waves, respectively. Since ul, u2 are the longitudinal and transverse 
waves respectively, if follows that pv P= l/zuIm(el,u,) and pv,# = l/,o Im(o,, ue) denote the energy 
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densities of the longitudinal and transverse waves, respectively. In an elastic inhomogeneous 
half-space the energy is transmitted, within the accuracy of up to the terms tending to zero 
as R, r-+00, across the side surface of the cylinder by the Rayleigh waves and through the 
surface of the lower hemisphere by the volume waves. Indeed, it can be shown that for the 
type of Rayleigh waves u-es, c> 0 when R+oc,+>nLi are valid, while for the volume waves 
we have u-r-'/l when r+oO,z=const. From this it follows that pvr - r-: r-00, pRR2u 
E-CR, Rem. 

The above computations show that the energy of the volume waves Ev calculated from (3.3) 
by integrating the energy density of the longitudinal and transverse waves over the surface 
of the lower hemisphere, coincides with the value of Evobtained by integrating from zero to 
x (formula (2.2)). Similarly, the energy of the Rayleigh waves Es calculated from (3.1) by 

integrating the energy density of the Rayleigh waves over the side surface of the cylinder co- 
incides with the value of Es obtained as the sum of the residues (see (2.21). In a zone 
situated at some distance from the source we can construct, with help of (3.1) and (3.3), the 
expressions for the energy density of thevolume pv and Rayleigh pR waves not only in the 
direction determined by the normal to the surface under consideration, but also in the other 
two directions orthogonal to this normal and to each other. To do this it is sufficient to 
take the corresponding direction ofthenormal n in the expression for the energy density. The 
resulting three quantities represent the projections of the energy density vector p on the 
three directions chosen. The vector (Umov vector) determines the amount and direction of the 
energy transmitted through the given paint of the medium. 

Fig.3 depicts the dependence of the energy density of the Rayleigh waves pR on the depth 
z for '>I, in the same five-layer half-space as in Fig.2, o= 0.5, pa,* is the tangential 

source and pn.r is the vertical source. The solid lines correspond to '~s,~ x 5x1O*, 'P = 0 ,the 

dashed lines to rps,% X 5.10', cp=n/2 and the dash-dot lines to rps,* x iOx. We see that the 

energy flux density is greater in the more rigid layers (medium 2) than in the softer layers 
(medium 1) and increases near the layer boundaries, while in a homogeneous half-space ps de- 

creases monotonously. 
The results shown in Fig.3 are independent of r. This is due to the fact thatat o = 0.5 

the elements of the matrix K have only a single pole yielding a significant Contribution. If 
the number of poles is greater than one, then the pattern of the energy density pa distribu- 
tion over z is different for different P, although the total amount of energy l?s passing 
across the side surface of the cylinder remains constant. Thus in Fig.4 the vectors Ws are 
constructed at various distances r for the tangential source and direction e=n/2. The medium 
here is a two-layer half-space and h= 4, o= 0.5. 

The author thanks V.A. Babeshko, Zh. F. Zinchenko and N.V. Glushkov for assessing the 

paper and for valuable comments. 
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